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We consider steady two-dimensional fluid flow and heat transfer near contact lines in 
single-phase and two-phase systems. Both single- and double-wedge geometries admit 
separable solutions in plane polar coordinates for both thermal and flow fields. We 
consider the class of functions which have bounded temperatures and velocities at the 
corner. When free surfaces are present, we seek local solutions, those that satisfy all 
local boundary conditions, and partial local solutions, those that satisfy all but the 
normal-stress boundary condition. Our aim in this work is to describe local fluid and 
heat flow in problems where these fields are coupled by determining for which wedge 
angles solutions exist, identifying singularities in the heat flux and stress which are 
present at contact lines, and determining the dependence of these singularities on the 
wedge angles. For thermal fields in two phases we identify two modes of heat transfer 
that are analogous to the two modes identified by Proudman & Asadullah (1988) for 
two-fluid flow. For non-isothermal flow, locally, convection does not play a role but 
coupling through thermocapillary effects on non-isothermal free surfaces can arise. We 
find that under non-isothermal conditions a planar free surface must leave a planar 
rigid boundary at an angle of K, the same angle found by Michael (1958) for an 
isothermal rigid/free wedge, in order to satisfy all local boundary conditions. Finally, 
we find that situations arise where no coupled solutions of the form sought can be 
found; we discuss means by which alternative solutions can be obtained. 

1. Introduction 
Corner flows are often present under non-isothermal conditions in which case both 

fluid flow and heat transfer are simultaneously acting (e.g. non-isothermal flow in a 
driven cavity (Burggraf 1966), or thermocapillary-driven flow in a box (Zebib, Homsy 
& Meiburg 1985)). Moving-contact-line problems can be in this category (e.g. droplets 
spreading on heated substrates (Ehrhard & Davis 1991)). Further, such situations 
always occur at the ‘edges’ of fronts that define phase transformation. For example, 
if a droplet of volatile liquid spreads on a heated surface, the evaporative mass loss near 
the contact line modifies the local flow (Anderson 1993). Contact lines joining multiple- 
phase/multiple-field regions occur frequently in crystal growth systems. Meniscus- 
defined processes such as float-zone, and Czochralski systems, as well as other 
solidification processes are in this category (e.g. see Brown 1988). 

Two-dimensional isothermal viscous flow in a corner region has been studied by 
several authors. Dean & Montagnon (1949) considered a wedge bounded by two rigid 
planes and determined properties of the flow as functions of the wedge angle. Michael 
(1958) considered the same geometry but with one solid boundary and one free surface 
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and found that in order for the free surface to be stress-free the wedge angle must be 
n. Moffatt (1964) considered these cases as well as the case of a wedge bounded by two 
free surfaces and described in detail situations in which sequences of eddies, now 
known as Moffatt vortices, can be present in the flow. Proudman & Asadullah (1988) 
considered two-fluid systems where the fluids meet along a flat surface. They identified 
two modes of flow in the limit of small viscosity ratio. The first of these modes, the 
‘velocity’ mode, is that obtained by a single-phase analysis. The second, the ‘stress’ 
mode, is a new mode resulting from a second phase with small viscosity. Anderson & 
Davis (1993) considered two-fluid isothermal flow in a wedge bounded by two rigid 
planes of arbitrary angle. They identified singularities in the flow, Moffatt vortices, as 
well as geometries consistent with separable local solutions. They showed that the two 
modes identified by Proudman & Asadullah (1988) were present for all wedge angles. 

The goal of the present work is to extend the isothermal corner flow results to cases 
of non-isothermal flow near contact lines occurring in single-phase and two-phase 
systems. In B2.1 and 2.2 we shall look at heat transfer and non-isothermal fluid flow 
in a single phase. Here we find that the thermal and flow fields are locally coupled only 
through thermocapillarity on non-isothermal free surfaces. We also find that situations 
arise where no coupled solutions of the form sought can be found; means by which 
alternative solutions can be found are discussed in $5. In $3 we shall consider these 
fields in two phases. Here we first consider two-phase pure heat transfer (43.1) and 
identify two modes of heat transfer in the limit of large or small conductivity ratio; 
these two modes are analogous to the two modes of flow identified by Proudman & 
Asadullah (1988) for two-fluid flow in the limit of vanishing viscosity ratio. For non- 
isothermal flow (43.2) we find that a planar free surface must leave a planar rigid 
boundary at an angle of n, the same angle found by Michael (1958) for a planar free 
surface and a planar rigid boundary under isothermal conditions. In $4 we examine 
non-isothermal flow using a small-capillary-number expansion, and compare the 
results with the isothermal results found by Anderson & Davis (1993). As with single- 
phase non-isothermal flow, we find situations where no coupled solutions of the form 
sought can be found and discuss interpretations and alternative approaches in $5. 

We shall consider the class of solutions that have bounded temperatures and 
velocities at the wedge vertex. We shall seek both local solutions, those that satisfy all 
local boundary conditions, and partial local solutions, those that, when free surfaces are 
present, satisfy all local boundary conditions with the exception of the normal-stress 
boundary condition. Partial local solutions are important in the description of the local 
flow valid for infinite surface tension (or zero capillary number). When perturbation 
methods for small capillary number are used, conditions on the flow imposed by the 
normal-stress boundary condition do not appear in the leading-order problem and 
therefore partial local solutions can be viewed as leading-order solutions for these 
cases. Partial local solutions also describe cases in which there exists an appropriate 
spatially varying pressure distribution outside the free surface such that the normal- 
stress boundary condition is satisfied without further restriction on the flow (Moffatt 
1964). Under such an assumption, the restriction of small capillary number is not 
necessary. When such provisions are made for the pressure, these solutions satisfy all 
local boundary conditions and can be thought of as specialized local solutions. 
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8 = 0  8 = a  

nf nf 
ft nf 
ft ft 

TABLE I .  Types of thermodynamic boundary conditions for a single wedge 

2. Single-phase systems 
2.1. Thermal jield 

Consider steady two-dimensional heat transfer in a wedge. The wedge of material, solid 
or fluid, has boundaries at 0 = 0 and 8 = a where 0 is the azimuthal angle. The radial 
distance from the comer is r.  In the case of a fluid wedge, heat transfer is in general 
coupled to the flow through the advection term u .  V T  in the energy equation. In the 
steady state this reduces to V2T = 0 when 

r < X t h / U ,  (2.1) 

where X t h  is the thermal diffusivity and Uis a velocity scale. Note that when the corner 
is a flat free surface, for example, the existence of such a region is not guaranteed. In 
the case of a wedge of solid material this equation is exact. 

The general thermal boundary condition is k(f i -VT) = - h(T- Tw), where fi  is a unit 
normal directed out of the wedge, T, is the far-field temperature of the boundary 
material, k is the thermal conductivity, and h is the heat transfer coefficient. In polar 
coordinates for a wedge this becomes 

If the boundary material is a perfect conductor (i.e. h = a) then this condition reduces 
to T = T,. If the boundary material is a perfect insulator (i.e. h = 0) then aT/a8 = 0 
(i.e. zero heat flux). It can be shown that the general boundary condition (2.2) gives the 
same leading-order behaviour near the corner when h $. 00 as the no-flux case. 
Therefore, in what follows, we shall consider just two types of boundary conditions. 
The different combinations are summarized in table 1. Here ‘nf’ refers to the no-flux 
condition 

c?T 
- = 0  ae 

and ‘ft’ refers to the 

In each case we seek 

fixed temperature condition 

T =  T,. (2.4) 

separable solutions to Laplace’s equation of the form 

T(r, 0) = rT[Ath cos 78 + IFh sin 781 + Ctn8 +Dth. (2.5) 

Here, T is the separation constant taken to be positive (negative values of T ,  as well 
as lnr terms, although solutions to Laplace’s equation, give rise to unbounded 
temperatures at the origin and therefore are excluded from the present analysis). This 
form of the solution allows one to examine directly through the value of the exponent, 
7, singularities at the comer. These results are summarized as follows: 



234 D .  M .  Anderson and S.  H .  Datlis 

5 1  I I 

-2  0 Ll 0.5 1.0 I I I 

I I I I I I 1.5 I I I I I I I I I I 2.0 I 

CL ln: 

FIGURE 1. Single-phase pure heat transfer: the smallest heat-flux exponent, T -  1, for three different 
types of thermal boundary conditions: no-flux/no-flux (nf/nf), fixed-temperature/no-flux (ft/nf), 
and fixed-temperature/fixed-temperature (ft/ft). The heat flux becomes singular when r - 1 becomes 
negative. Notice that the heat flux in the ft/ft case, which has a (l/r) behaviour due to the differing 
boundary data on the two wedge boundaries, is the most singular while the nf/nf case is the least 
singular. Note that r is real. 

(a) two perfect insulators (aT/C?B = 0 on 0 = 0, a) 

(b) one perfect conductor and one perfect insulator (T  = T, on B = 0 and aT/a0 = 

T=Dth+A~r rcos rO,  r=mn/a ,  m =  1,2,3 ,...; (2.6) 

(2.7) 

T =  T,+(T,-T,)8/a+Bt,hrrsinr8, r=mn/a,  m =  1,2,3 ,.... (2.8) 

lh r . 0 on 8 = a) 
T=T,+B,r sinT0, r=(m++)n/a,  m = O , 1 , 2  ,...; 

(c) two perfect conductors (T = T, on 0 = 0 and T = T, on 0 = a) 

From (2.5) we find that the heat flux in both radial and azimuthal directions, in 
general, is proportional to r7-’. Figure 1 shows a plot of the heat flux exponents, r -  1, 
and indicates the nature of the heat flux at the origin. When r- 1 < 0 the heat flux is 
singular; otherwise it is non-singular. Note that r is always real. In case (a), the heat 
flux is singular for a > n but is always integrable. In case (b), the heat flux is singular 
for a >  but always integrable. The heat flux in case (c) is singular and non-integrable 
for all wedge angles whenever T, + T, which reflects the discontinuous boundary data 
at the vertex. If T, = the r-l singularity is relieved and the description of the 
singularities is the same as in case (a). Notice that the nf/nf case, case (a), is the ‘least’ 
singular while the ft/ft case, case (c), is the ‘most’ singular. We find that larger wedge 
angles correspond to stronger heat flux singularities and that T --f co as CL -f 0. 
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2.2. Non-iso thermal $ow 
2.2.1. Preliminaries 

In this section we describe the general formulation for non-isothermal fluid flow in 
a single wedge. We seek separable solutions for both the thermal and flow fields. For 
a local description of the flow as Stokes flow, we require that r < v /U,  where v is the 
kinematic viscosity, and U is a velocity scale. For the thermal problem, there is a 
similar restriction on r given by (2.1). Therefore, for r 4 min(v/U, X t h / U )  the 
equations governing non-isothermal flow are V2$ = 0 and V2T = 0. Here ~ is the 
streamfunction and is related to the velocity vector, u, in polar coordinates by 

(2.9) 

As a result, there is no coupling in the bulk and hence any local coupling must arise 
at the boundaries. 

When a free surface is present, variations in surface tension arise from temperature 
variations along the free surface; these surface-tension gradients drive the flow. In the 
following analysis we assume that the surface tension varies linearly with temperature 
and is given by y = yo-y'(T- T,) where yo is the surface tension at the reference 
temperature T, and y' is constant and positive; thus 7' = Ida/dTI. This gives the 

(2.10) 
thermocapillary condition 

where Q = -p/+p[Vu+(V~)~] is the stress tensor with pressure p. Note that for 
wedges bounded by two rigid surfaces, for cases where y' = 0, or for cases with 
isothermal free surfaces, the thermal and flow fields are locally decoupled and the 
solutions are given by the superposition of the results for pure heat transfer and the 
results for isothermal flow (e.g. see Anderson & Davis 1993). 

Even with thermocapillarity present, the thermal problem remains unchanged from 
the single-phase pure heat transfer problem and decouples from the flow. The thermal 
fields are, in fact, just the single-phase thermal fields of $2.1. 

When thermocapillarity is present, the differential system for the flow changes from 
a homogeneous one (i.e. isothermal flow) to an inhomogeneous one (i.e. non- 
isothermal flow) since the flow has a component that is locally driven. Recall that in 
pure-heat-transfer problems we found eigenvalues 7(a) which allowed non-trivial 
thermal fields (see figure 1). Hence in order to balance forces on the free surface near 
the corner, the streamfunction must have terms proportional to rTf1  corresponding to 
a non-zero shear stress generated by the temperature gradients. Therefore, the form of 
the streamfunction is given by 

@ p  = rT+1[A~~~~(~+1)~+B~sin(~+1)8+C,~~~(~-l)8+D,sin(~-l)8] 

[ o . f i ] . i =  - ~ ' ( f -  V) T, 

+ r2(A, cos 28 + B, sin 28 + C, 8 + D,) 
+ r(A, cos 8 +B,  sin 8+ Co 8cos 19+ Do Osin O), (2.11) 

where At ,  Bi, Ci, D, for i = 0,1,7 are unknown constants to be determined by the 
boundary conditions. 

The isothermal-flow result, which corresponds to zero shear stress on the free 
surface, is still a complementary solution and must be superposed on the particular 
solution for a complete description of the local flow. The isothermal-flow problem has 
eigenvalues a(a), corresponding to the power of r in the flow solution, analogous to the 
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temperature exponent, r. These eigenvalues, a(a), for which nontrivial flow could be 
obtained are given by 

for a rigid/rigid wedge (Dean & Montagnon 1949), 
a s ina f s inaa  = 0 (2.12) 

a sin 2a- sin 2aa = 0 (2.13) 
for partial local solutions for a rigid/free wedge (Moffatt 1964), and 

sin(g- l )as in(a+ 1)a = 0 (2.14) 

for partial local solutions for a free/free wedge (Moffatt 1964; Anderson & Davis 
1993). 

For the terms proportional to r2 in the streamfunction there are similar eigenvalues 
(for special angles). These are given by 

sin a(sin a - a cos a) = 0 
for a rigidlrigid wedge, 

sin 201 - 2a cos 201 = 0 

for partial local solutions for a rigid/free wedge, and 

sin2a = 0 

(2.15) 

(2.16) 

(2.17) 

for partial local solutions for a free/free wedge (see Anderson & Davis 1993). 
Therefore, the complete local streamfunction will have terms proportional to r7+l as 
well as rUf1, r2 and r as allowed by the appropriate isothermal flow. 

Of particular interest will be the comparison of the exponents a and T .  Notice that 
if r corresponds to an eigenvalue of the isothermal problem (i.e. .(a) = g(a) for some 
a), there will be a solvability condition required on the forcing terms. We shall find that 
in some cases this solvability condition cannot be satisfied unless 7' = 0 or unless the 
temperature field is uniform throughout the wedge; this implies that the solution to the 
problem, as posed, with y' =t= 0 requires an isothermal corner. Further interpretations 
in these cases are given in 95. 

Since the thermal problem decouples from the flow and T - r'f,(B), we know that the 
surface temperature gradients have the form 

(2.18) 

Therefore we can solve the flow problem for the rigid/free wedge case and for the 
free/free wedge case which hold for general values of r and general thermal boundary 
conditions. We can then apply these general results to specific thermal fields by 
substituting appropriate values of T and A(@. 

Rigidlfree wedge : The hydrodynamic boundary conditions are given by 

@ = - = O  w on B = O ,  (2.19~) 
a0 

$ = 0  on B = a ,  (2.19 b) 

1 az$ 
p - - = - ~yiS , (a)  rT-' on 0 = a, 

r2 2H2 

on B=a.  

(2.19~) 

(2.19d) 
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Here ,u is the viscosity and y: refers to Idy/dT( evaluated on 8 = a. The pressure, p ,  is 
related to $ through the Stokes equations. The thermocapillary condition requires that 
@ - rTt l .  We distinguish between cases where T =# 1 and those with T = 1 since these 
two cases require different forms of the streamfunction (see (2.11)). In the following 
description we classify solutions according to the value of 7, which is determined by the 
thermal problem. Only the particular solution, kP, is given; however, the complete 
local description of the flow requires the homogeneous, or isothermal, contribution as 
well. We seek both local solutions, $ p  and partial local solutions, $ p .  

The solutions can be categorized as follows: (1 i) 7 + 1, ~sin201-sin 2 ~ a  + 0;  
(lii) T + 1, ~sin2a-sin27a = 0; (2ij T = 1, sin2a-2acos2a =+ 0;  and (2ii) T = 1, 
sin 201-2acos 2a = 0. Essentially we distinguish between cases in which 7 corresponds 
to an eigenvalue of the homogeneous problem (cases (lii) and (2ii)) and those in 
which it does not (cases (li) and (2i)). 

(1 i) When T + 1 and T sin 2a - sin 2701 $: 0, partial local solutions are given by 

where g(8, a, T )  is given by 

g(B,a,7) - sin(a-0) sin 7(a - 8) 
sin 78 - T sin 8. - - 

sin 701 sin a sin a sin TOL 

Local solutions are found only for 01 = n: and are given by 

(2.20) 

(2.21) 

(2.22) 

We immediately see that form (2.20) breaks down when T corresponds to an eigenvalue 
of the isothermal flow problem (i.e. when  sin 2a-sin27a = 0). 

(1 ii) When T + 1 and T sin 2a - sin 2 ~ a  = 0, there is a solvability condition on the 
right-hand-side forcing in (2.19). For these values of 7 no non-zero local or partial local 
solutions exist unless a = 7c and T = 2,3,4, . . . . In this case both local and partial local 
solutions have the same form (i.e. the normal-stress boundary condition is identically 
satisfied by the partial local solution form), given by 

(2.23) 

(2i) When 7 = 1 and sin 2a - 201 cos 2a + 0, partial local solutions are given by 

x [(2a-sin2a)(cos26'- l)-(cos2a- 1)(28-sin28)]. (2.24) 

Again we see that this solution breaks down when sin2a-2acos2a = 0, (i.e. (2.16)). 
Local solutions exist only when a = n: and are given by 

cos 28). (2.25) 
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(2ii) When 7 = 1 and sin 2a - 201 cos 201 = 0, no non-trivial streamfunctions exist. 
Freelfree wedge: Here thermocapillary effects may be present on both boundaries. 

$ = 0  on 0 = O,a, (2.26 a) 

The hydrodynamic boundary conditions are given by 

(2.26b) 

(2.26 c) 

on U=O,a. (2.26d) 

Note that 7; and 7; are not necessarily equal. These boundary conditions require 
$ - rT+l. 

Again the solutions can be categorized into resonant and non-resonant cases: 
(3i) 7 += 1, s i n ( ~ + l ) a s i n ( ~ - l ) a  + 0; (3ii) 7 =k 1, sin(7+1)a = 0, sin(7 f 1)a =I= 0; 
(3iii) 7 + 1, s i n ( ~ + l ) a  = sin(7-l)a = 0; (4i) 7 = 1, sin2a =I= 0; and (4ii) 7 = 1, 
sin2a = 0. Note that cases (34 ,  (3iii), and (4ii) are the resonant cases in which 7 

corresponds to an eigenvalue of the homogeneous problem. 
(3 i) When 7 + 1 and sin (7 + 1) a sin (7 - 1) a + 0, partial local solutions are given by 

Local solutions are given by 

subject to the constraints 

sin a[y;f,(O) cos CI + yLf,(a) cos ~ a ]  = 0, 

sin a[y;f,(O) sin a + y;f,(a) sin 7 4  = 0. 

(2.29 a) 

(2.29b) 

(3 ii) When 7 $: 1 and sin (7 k 1) a = 0 but sin (7 f 1) a =k 0 (i.e. sin 2a $: 0, and 7 = 
mn/a- 1 where rn is any integer such that 7 > 0), we find that no non-trivial solutions 
exist unless 

Y X 4  + y;f,(o> ( - 1)" cos a = 0, (2.30) 

in which case partial local solutions are given by 

(2.31) 

Local solutions in this case do not exist. 
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Hydrodynamic b.c. Thermal b.c. 

8 = 0  8 = a  8 = 0  8 = a  

rigid free nf nf 
rigid free ft nf 
free free nf  nf 
free free ft nf 

TABLE 2.  Types of boundary conditions for single-phase non-isothermal flow 

(3 iii) When 7 =# 1 and sin (7+ 1) a = sin (7- 1) a = 0, local and partial local 

Ykfr(a)-YX(o)(-1) '  = 0. (2.32) 

solutions exist only if a = x and if 

Here T = 2,3,4, . . . and the streamfunction is given by 

$, = @ p  = --f ,(O) Y; rr+l sin 78 sin 8. (2.33) 

Note again that partial local solutions are not distinguished from local solutions since 
the normal-stress boundary condition is identically satisfied by the partial local solution 
form. 

2P 

(4i) When 7 = 1 and sin2a i 0, partial local solutions are given by 

No local solutions exist in this case. 
(4ii) When 7 = 1 and sin2a = 0, no partial local solutions exist unless 

yY1(a) + r;fl(o) cos 2a = 0 
in which case 

(2.35) 

(cos2I9-1)+(1-cos2a)- . (2.36) 
a "I 

When 7 = 1, local solutions exist when a = x and 

in which case 
YYl(7C) + Y X ( 0 )  = 0 (2.37) 

9, = sf1(o) r2 sin' 19. (2.38) 

2.2.2. Specific cases 

In this subsection we discuss four possible situations in which thermocapillary- 
driven flows are present for single-wedge geometries. The boundary conditions for 
these cases are shown in table 2. Notice that the thermal boundary condition which 
allows surface-tension gradients along the free surface, 8 = a, is the no-flux condition. 

Rigidlfree wedge, no-fluxlno-flux: In this case the thermal field is given by (2.6). We 
first identify the points where solvability conditions arise. First, T sin 2a - sin 27a = 0 
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when a = in, x, or ix so these are points with potential solvability difficulties. Next, 
notice that r = 1 only when a = TC and m = 1 so the condition required for non-trivial 
isothermal streamfunctions with 9 - r2 is not satisfied; i.e. sin2a-2acos2a =+= 0, and 
therefore no solvability problems arise at these points. 

We find that local solutions can be found only for a = x. In this case the complete 
streamfunction, including the isothermal contribution, is given by 

YL 8 sin 8 +-A$ rm+l sin m0 sin 8, 
2P 

= a, rm+g sin (m - (2.39) 

where m = 1,2,3, ..., a, is an arbitrary constant and A$ is the arbitrary thermal 
coefficient of (2.6). Notice that the dominant term near Y = O  comes from the 
isothermal contribution, $ - rg. However, the constant a, is determined by matching 
to an outer flow, and must be related to yj. Indeed, if the flow is purely thermocapillary 
driven, a, will be proportional to y:. 

Partial local solutions are given as follows. 
For a =k in, TC, 

+L A$ rTtl sin 78 sin 8+ a,  ro+lg(0, a, a), (2.40) 
2p cos a 

where cr satisfies (2.13), and g(B, a, u) is given by (2.21). Note that this streamfunction 
becomes ill-behaved as a+& or $x unless A g  balances cosa in these limits. Figure 2 
shows a plot of the exponents 7- 1 and Re (r - 1) as functions of a. Near r = 0, the 
dominant term is proportional to r7+l when a < +x (thermally dominated) and F+l  

when a > $R (hydrodynamically dominated). 
For a = x the streamfunction is given by 

$ = am rm+f sin (m -i) Bsin B+- 7; A ,  th r m+l sin mesin 8 
2P 

+ d, rm+'[sin (m + 1) tl cos 0 - (m + 1) cos (rn + 1) 8 sin 81, (2.41) 

where m = 1,2,3,. . . and the coefficients a, and d, are arbitrary. 
For a = $x, and $T no coupled partial local solutions exist for temperature fields and 

streamfunctions in the class of solutions we are considering. Further discussion of this 
issue is given in $ 5 .  

Rigidlfree wedge,fixed-temperaturelno-$ux: The thermal field is given by (2.7). Again, 
we identify points where the forcing is resonant. First, note that 7 sin 2a - sin 2ra = 0 
when a = in, TC, gn. Next, note that 7 = I when a = ix, gx so sin2a-2acos2a + 0. 
Therefore no solvability problems exist when T = 1. 

We find that no coupled local solutions exist but that coupled partial local solutions 
do exist and are given as follows. 

For a =k ix, x, gx, 

sin r8 sin 8 r cos r0 sin 8 - sin 78 cos 8 
sin a ] + a, r'+lg(8, a, u), (2.42) cos a 

+ 
where u satisfies (2.13) and a,, is an arbitrary constant. Figure 2 shows a plot of the 
exponents T -  1 and Re ((T- 1) as functions of a. We see that near the corner (Y + 0) the 
dominant term in the streamfunction is P1 everywhere except for x < ct < ix, where 
rV+l dominates. The stress and heat flux each are singular for a > +IT with the same 
strength except when x < a < ~ T C ,  in which case the stress singularity is stronger. 
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FIGURE 2.  Single-phase non-isothermal flow: heat-flux and stress exponents, 7- 1 and Re(cr- l), 
respectively, for a rigid/free (rf) wedge. The stress exponent is shown for partial local solutions (PLS). 
The field with the smallest exponent for a given value of a is the stronger. In the ft/nf case the stress 
has the stronger singularity only for 7c < a < in. In the nf/nf case, the stress is the stronger field for 
a > $7c while the heat flux is stronger for a < in. The dashed portion of the stress exponent indicates 
that its imaginary part is non-zero. 

For a = ix we have T = 2m+ 1 = 1,3,5,. . . . Here only the first mode, 7 = 1, is 

T =  Tw+Bthrsin8 (2.43) 

allowed by the solvability condition. Therefore, the thermal field is given by 

and the resulting streamfunction is given by 

K 

4 
- 1 +- 8 + cos +a, r2m+3 sin 2(m + 1) 8 sin 8 

4P 

+ d, r2m+4[~in (2m + 3) 8 cos 8 - (2m + 3) cos (2m + 3) 0 sin 01, (2.44) 

where m = 0, 1,2, . . . , and the coefficients Bkh, a,, and d, are arbitrary. Notice here 
that the dominant term near r = 0 is the term proportional to r2.  The heat flux is 
regular but, owing to the term proportional to r28, the stress field has a logarithmic 
singularity . 

For 01 = $x we have 7 = $m + $ = i, 1, $, . . . . Here we find similar results to the case 
a = in. The thermal field is given by 

T =  Tw+Bt:rsinO (2.45) 
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+ d, rU+l[sin a0 cos 8 - a cos a0 sin B] + a,rU+l sin sin 6, (2.46) 

where a = $,$,;, . . . for the dr terms and CT = f , $ ,  2,. . . for the a, terms. Again Bib, dr, 
and ap are arbitrary constants. Here the heat flux is regular but the stress is singular 
( N r-3). Notice that although there is again a logarithmic singularity at r = 0 arising 
from the term r28, it is not the dominant singularity. 

For a = n no coupled partial local solutions or local solutions exist. For further 
discussion of this see $ 5 .  

Freelfree wedge, no-fluxlno-flux: In this case the thermal field is given by (2.6). Here, 
s in(~+l )as in(7-1)a=O only when a = n .  

We find that local solutions exist only when a = x  and only for the case where 
7; = yi. Here the streamfunction is given by 

Y' 
2P 

I) = B, r sin 8 + 3 A 2  rm+l sin me sin 0 + b, rm+' cos (m + 1) B sin 6, (2.47) 

where m = 1,2,3, . . . and the coefficients B,, AZ,  and 6, are arbitrary. 
Next, for partial local solutions we find that for a =k n: the streamfunction is given 

by 
y;l+ 7;  cos a 

sin a 

where $I represents the isothermal contribution proportional to ra+l and is given as a 
function of a by Anderson & Davis (1993, equations (2.35), (2.36), or (2.38)). 

Figure 3 shows the heat-flux and stress-field exponents, 7- 1 and CT- 1, respectively, 
as functions of a (note that a is real-valued in this case). The dominant term in the 
stream-function comes from rgfl for all values of a. Consequently, the stress is always 
more singular than the heat flux. 

For a = x we have 7 = 1,2,3, . . . and coupled solutions exist only in the case where 
y i  = yi. Here the streamfunction is given by 

Y' r2 sin 20 + 3 A; rm+l sin m6 sin e 
2.P 

& = go r sin o + 

+ F 2 [ b m  sin (m + 2) 6 + d, sin mo], (2.49) 

where m = 1,2,3, . . . . For this solution both the heat flux and stress are regular. 
Free/ free wedge, jixed-temperaturelno-flux : Here the thermocapillary effect will 

be present only on 0 = a, since A(0) = 0. The thermal field is given by (2.7). Here, 
sin (7+ 1) asin (7- 1) a = 0 when a = in or :n so these are the points where 
solvability conditions arise. 

We find that local solutions exist only for a = x and are given by 

@ - y L 3 t h r m L L  ~ C O S  (m +$) 6sin B+ B, r sin B+ b, rm+3 cos (m +2) Bsin 6, (2.50) 
2P 

where m = 0,1,2, . . . . Here, the heat flux and stress have square-root singularities. 
Partial local solutions are given as follows. 
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FIGURE 3. Single-phase non-isothermal flow: heat-flux and stress exponents, 7-  1 and cr- 1, 
respectively, for a free/free (@ wedge. The stress exponent shown is for partial local solutions. In the 
ft/nf case, the stress is the stronger singularity for a > $. The heat flux is the stronger field for a < 

but neither field is singular. In the nf/nf case, the stress is always the stronger field. Note that both 
7 and u are real. 

(2.51) 

where GI refers to the isothermal contribution proportional to rU+l and is given in 
Anderson & Davis (1993, equations (2.35) or (2.37)), depending on a. 

Figure 3 shows the exponents, T- 1 and g- 1 for this case. The dominant term in 
the streamfunction corresponds to r7+l when a < in  and to rU+' when a > in. The heat 
flux and stress are singular for a > in with the stress having the stronger singularity. 

If a = ;IT, 2n no coupled solutions exist. Again, see $5. 
Finally, for the rigid/rigid case or the rigid/free, free/free cases where y' = 0 there 

is no local coupling between the thermal and flow fields. Consequently, the solutions 
to the 'non-isothermal' flow problem are just those for the single fields. That is, $ - 
rU+l and T - r'. Figures 2 4  show the heat-flux and stress exponents for rigid/free 
wedge, free/free wedge, and the rigid/rigid wedge, respectively. Note particularly that 
when the stress exponent has a non-zero imaginary part (dashed portions of the curves 
in figures 2 and 4), MoRatt vortices are present. However, the heat-flux exponent is 
real; hence, the thermal field is monotonic in r. Therefore, locally, there is a coexistence 
of a flow with Moffatt vortices and a monotonic thermal field. This type of solution is 
possible because, locally, there is no advection in the energy equation. The singular 
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7-1, Re(c-1) 

a In 

FIGURE 4. Single-phase non-isothermal flow: heat-flux and stress exponents, 7 - 1 and Re (v - l), 
respectively, for a rigid/rigid (rr) wedge. In the ft/nf case, the heat flux is the stronger singularity for 
LY > ix. In the nf/nf case, both stress and heat flux become singular for a > x but the stress is the 
stronger singularity. The dashed portion of the stress exponent indicates that its imaginary part is 
non-zero. 

nature of the heat flux and stress can be identified for the rigid/free wedge and the 
free/free wedge in figures 2 and 3. For the rigid/rigid wedge (figure 4) the no-flux/no- 
flux case has singular heat flux and stress for a > 7c with the stress being the stronger 
singularity. For the fixed-temperature/no-flux case the heat is singular for a > in. 

3. Two-phase systems 
We now consider two-phase problems with a double-wedge geometry. Here the 

outer boundaries are given by H = - a1 and H = a, and the interface separating the two 
phases 1 and 2 is given by H = 0;  the total wedge angle is a = 0 1 ~  +a,. We shall first 
consider pure heat transfer in two phases, and then two-phase non-isothermal flow for 
a solid/liquid wedge. 

3.1. Thermal fields 
In this section we consider heat transfer only. We take the thermal conductivity in 
regions 1 and 2 to be k, and k,, respectively and solve for the temperatures and T,  
which locally satisfy Laplace’s equations. The thermal boundary conditions on the 
outer boundaries will be the same as in the single-phase cases. Along the dividing 
boundary, 0 = 0, we require continuous temperatures and heat fluxes. The boundary 
conditions for the three cases we shall consider are summarized in table 3. Here 
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o = -a1 o = o  o = a ,  

Case I nf continuity nf 
Case 2 ft continuity nf 
Case 3 ft continuity ft 

TABLE 3. Types of thermodynamic boundary conditions for a double wedge 

'continuity' corresponds to the conditions of continuous temperatures and heat fluxes 
across the interface 6 = 0 as given by 

and 'nf' and ' ft' refer to no-flux and fixed-temperature conditions, respectively, as 
described in 92.1. Keller (1987) has analysed the subcase, a = in, of Case 2 in which 
the harmonic function was related to the conductance of a material arranged in an 
array of blocks with alternating high/low conductivity. 

The solutions in these cases are as follows. 
For Case 1 

q = D"l" + Athr7 cos 7(6 + a,), 
T, = D~h+-r7[cos7(6+ctl)+(k- I)cos7alcos76], 

(3.2a) 

(3.2b) 

(3.3) 

(3.4a) 

(3.4b) 

(3 * 5 )  

Ath 
k 

where 

For Case 2 

sin 701 = (1 - k) cos 7a1 sin 701~. 

= c, +Athr7[c0s ~ ( 8  - a,) + (k - 1) sin 7a2 sin 761, 
= c, + Athf  COS 7(6 - aZ), 

where 

For Case 3 

cos 701 = (k  - 1) sin 7aZ sin 7a1. 

(6 + al) + Athr7sin 7(8 + a1), T., - T., 
= T,,+k- 

a, + ka, (3.6a) 

Ath 
k "-" (8+kal)+-r7[sin7(8+a1)+(k- l)sin7a,cos76], (3.6b) 

a2 + kol, 
T,  = T.,+---- 

where (3.7) 

Here, c, and z, correspond to the fixed temperature values on 6 = -a1 and a2 
respectively, and k = k , /k ,  is the conductivity ratio. Note that if the boundary 
conditions in Case 2 were reversed (i.e. no flux on 6 = -a1 and fixed temperature on 
6 = a2), the resulting thermal field, with T, and T,  interchanged, could be found by 
replacing (k,a2,al) by (l/k, -a1, -a2) in (3.4) and (3.5). 

Conditions (3.3), (3 .9 ,  and (3.7) determine 7 for a given geometry and conductivity 
ratio, k .  These conditions have symmetry characteristics that simplify the analysis. 
First note that, in all three cases, if k = 1, then we can recover the single-phase results 
of $2.1 by letting 6 + 6-a, and interpreting a as the single-phase angle. When k = 1 ,  
the two phases are thermodynamically indistinguishable and hence are seen as a single 
phase. In Case 1, given that (k ,  7, a*, a,) satisfies condition (3.3), then (l/k, 7, al, a,) also 

sin 7a = (1 - k)  sin 7al cos 701~. 
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FIGURE 5. Two-phase pure heat transfer: the thermal field exponent as a function of the wedge angles 
for conductivity ratios k = 100 (solid curve) and k = c ~ 3  (dashed curves) for Case 1. As k+ co the 
roots approach solutions of cos ml sinm, = 0. Note that only the dashed curve on the right is 
obtained from the single-phase analysis when phase 1 is completely neglected. The sketched insets 
show the two types of modes which are present in the two-phase analysis in the limit k+ co. The inset 
on the left shows the heat-flux mode in which the phase with the larger conductivity is at a relatively 
constant temperature. The inset on the right shows the temperature mode in which the temperature 
in both phases is substantial along 6' = 0. In each case the temperature gradient at 6' = 0 in phase 1 
is much larger than that in phase 2 ;  however, the heat fluxes balance owing to the large conductivity 
ratio. 

satisfies the condition. Therefore, we can limit our analysis to k > 1. In Case 2, given 
that (k, 7, a2, al) satisfies condition ( 3 . 9 ,  then (k ,  7, a,, a,) also satisfies the condition. In 
Case 3, there is the same type of symmetry as in Case 1. In fact, given a solution (k, 
7, al, a,) satisfying condition (3.3), then (k, 7, a2, al) satisfies condition (3.7). Therefore 
the roots, 7, for Case 3 can be deduced directly from those of Case 1. 

We have analysed these nonlinear conditions numerically as well as asymptotically 
to find the roots, 7, as functions of a2 for given values of k and a. Scaled versions of 
the numerically computed roots are shown in figures 5-7. These figures show (a /x )7  
us. a,/a for various values of k. Note that just as in the single-phase case, 7 is always 
real-valued. From these plots we see a strong dependence on the conductivity ratio, k. 

Figure 5 (Case l), shows the smallest root for k = 100.0. We see that as k+ co the 
roots of (3.3) approach values satisfying cos 7a1 sinm, = 0. Physically, k = co 
represents heat transfer in a single wedge between two no-flux boundaries. Therefore 
we expect to find roots, 7, which satisfy sinra, = 0 as in the single-phase problem. 
However, the two-phase problem has additional roots from the phase with 
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FIGURE 6. Two-phase pure heat transfer: the first three scaled thermal field exponents as functions 
of the wedge angles for various conductivity ratios k for Case 1. As k+m the roots approach 
solutions of cos ral sin ?a2 = 0 and show boundary-layer behaviour. The dashed curves show the 
solution for k = m. Note the addition of a second mode not obtained in the single-phase analysis. 
For k = 1 the value of r is independent of the individual wedge angles and depends only on the total 
wedge angle a. 

asymptotically small conductivity satisfying cos 7a1 = 0. Hence, the results for k = co 
in the two-phase problem have two roots, shown as the dashed curves in figure 5. 
Figure 6 shows higher modes as well and we see that the dashed roots form a grid-like 
pattern. The smallest value of T- 1 for 0 < ccz < CI is a combination of the two separate 
branches that intersect. 

Proudman & Asadullah (1988) identified the same type of behaviour for two-fluid 
corner flow with total wedge angle 7c. They identified two modes of flow in the limit of 
vanishing viscosity ratio between the two fluids: a ‘velocity’ mode in which the 
velocities on the separating interface were O( l), and a ‘ stress ’ mode in which the more- 
viscous fluid was relatively static but the stresses were equal in magnitude. 

In direct analogy to their work, we term the two modes of heat flow found here for 
k +  co the ‘temperature’ mode and the ‘heat flux’ mode. First, the temperature mode 
corresponds to an O(1) temperature on the interface 0 = 0. This mode is shown in the 
lower right inset in figure 5. The temperature gradient normal to the interface 0 = 0 is 
nearly zero in phase 2, while it is substantial in phase 1 ; the heat fluxes still balance as 
a result of k being large. This is analogous to the velocity mode in Proudman & 
Asadullah (1 988). Second, the heat flux mode corresponds to nearly zero temperature 
in both phases at 6’ = 0 (neglecting any additive constant temperature). This mode is 
shown in the upper left inset in figure 5.  There again is a nearly zero temperature 
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gradient normal to the interface in phase 2 at 0 = 0 and a substantial gradient normal 
to the interface 0 = 0 in phase 1, but again, owing to the disparate conductivities, the 
heat fluxes balance. In this mode the temperature is relatively constant in phase 2, the 
phase with the larger conductivity. The temperature field in phase 1 looks like that in 
a single wedge with a no-flux condition on 0 = - a1 and a fixed-temperature condition 
on B = 0. This is exactly analogous to the stress mode identified by Proudman & 
Asadullah (1988). 

An important feature here is the comparison of the exponent 7 for the single-phase 
case and the two-phase case in the limit of large or small conductivity ratio. In the 
single-phase case we find that 7 + co as a2 + 0 but when two phases are considered, r 
remains finite as a,+O and a, += 0. This shows that the limit k+  00 (or k+O) is 
singular and the consideration of a second phase may be important even for extreme 
values of k. 

The intersections of the branches for k = 03 imply the existence of double roots, 
which are important for understanding the behaviour of the roots when k =I m. Since 
7 is real-valued the roots for k = 00 always intersect. When k is perturbed from infinity, 
a root splitting occurs; two non-intersecting branches are formed, an upper and a 
lower. Notice that the lowest branch in figure 6 for large k is involved in one such 
splitting, the second branch has three such points, and the third has five. This 
behaviour is analogous to the root splitting described by Anderson & Davis (1993) for 
two-fluid flow for the same geometry. In their analysis, the root was in general 
complex and therefore with vanishing viscosity ratio, ,u = 0 (analogous to k = 00 here), 
the roots did not necessarily intersect in the complex plane; hence, the range in which 
there were double roots was limited. 

To describe analytically this splitting for the lowest root for k-t  00 for Case 1 we 
match the two outer solution branches corresponding to the solutions for k = m with 
an inner solution valid near the intersection of these two solutions. A boundary-layer 
correction is included which takes into account the non-uniformity present when a2 + 
0 and k +  co. The uniformly valid expression for the smallest value of 7 is given by 

where 

x 7c 
7 - T ,  + (;I3 - a2 (a2 -$a/ - k-a- 2a [ 2 + (;)4 ( ~ ~ ( a 2 - $ a ) ' k ] + ~ ( q ) - - + . . . ,  2a (3.8) 

(3.9) 

7 = a2 k,  and Z(7) satisfies vZ(q)  + tan Z(7) a = 0. Since Z(7)  must still be calculated 
numerically, this expression is most useful outside an O(l /k )  neighbourhood near 
a, = 0 where one can ignore the last two terms, which represent the corrected solution 
near the boundary layer at a2 = 0. 

For Case 2, a similar root splitting occurs for k + 0 and k -+ m . Figure 7 shows the 
smallest of these roots for various k. In the limit as k-0 the roots of (3.5) satisfy 
cos7a,cos7a2 = 0. Here we expect that 7 satisfies cos rq  = 0 as in the single-phase 
problem for a wedge with fixed temperature on 8 = -a1 and no flux on 0 = 0 but we 
pick up additional roots satisfying cos7a2 = 0 from the second phase. 

Again we identify the temperature and heat-flux modes. These two modes have the 
same properties as those shown for Case 1 in figure 5. The temperature mode 
corresponds to the left half of the curves shown for k+O (i.e. a, < al) and the heat- 
flux mode corresponds to the right half (see figure 7). In the temperature mode, the 
thermal field in phase 1, the phase with larger conductivity, is that predicted by the 
single-phase analysis. The heat-flux mode is the 'new' mode and corresponds to a 
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FIGURE 7. Two-phase pure heat transfer: the smallest scaled thermal field exponent as a function of 
the wedge angles for various conductivity ratios, k, for Case 2. As k + co this root approaches zero 
non-uniformly. As k+ 0 this root approaches solutions of cos 7a1 c o s ~ a ~  = 0 corresponding to two 
different modes. For k = 1 the value of 7 is independent of the individual wedge angles and depends 
only on the total wedge angle a. The inset shows isotherms corresponding to the point marked on the 
curve for k = 100.0. Here, the temperature in phase I is approximately linear in 0 while that in phase 
2 is logarithmic in r .  

nearly constant temperature in phase 1 and a temperature distribution in phase 2 
corresponding to a fixed-temperature condition on 0 = 0 and no-flux condition on 
f9 = a2. 

We again use singular perturbation methods to obtain an analytical solution for 7 
for k 4 1 .  Here we find that the uniformly valid expression for the smallest value of 7 

is given by 

7 -  n +-la,-;al-ks- 2n "[ 1 +  (3' - (.,-+)2- :I" +.... (3.10) 
a+21a2-;al a2 a 

In the limit k + 00 for Case 2 there is a root-splitting behaviour for the higher modes 
similar to that for k+O. However, the smallest value of T approaches zero non- 
uniformly as k e r n  (see figure 7). We again use singular perturbation methods to 
express the solution for the lowest mode analytically and find that 

(3.11) 
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where A(7) satisfies A(7)  ?;I tanA(7) a = 1 and 7 z  = a2 k and yl = a, k .  This expression 
will be most useful away from the two boundary layers near a2 = 0, and a where the 
bracketed terms can be neglected. These boundary layers each have thickness O(l/k). 

This limit leads to a different type of temperature distribution. We find that as k --f 
co the temperature in phase 2 goes like In r, independent of 8, while the distribution in 
phase 1 is approximately linear in 8, independent of P. An example of this mode is 
shown in the inset in figure 7. We shall discuss this solution further in $5. 

For k near unity, the roots approach constant values (for fixed a) in all cases. For 
this limit we have found expressions for 7 using a regular perturbation expansion in 
powers of k -  1. We find 

sin 27, a, 
2a 

7 = TO-(k -  1) 

(3.12) 

where 7, = mn/a for m = 1,2,3 ,.,. in Case 1 and 7, = (I+i)n/a for E = 0,1,2, ... in 
Case 2. 

The above asymptotic expressions for k-t  0,1, co agree well with the numerically 
computed values. 

In contrast to the single-phase pure-heat-transfer results, the value of 7 now has 
additional parametric dependence through the geometry and the conductivity ratio. A 
complete description of the regions in parameter space separating singular heat flux 
from non-singular heat flux is shown in figures 8 and 9 for Cases 1 and 2, respectively. 
The shaded regions correspond to singular heat fluxes (i.e. 7- 1 < 0) while the 
unshaded regions correspond to non-singular heat fluxes (i.e. 7- 1 > 0). The boundary 
between the shaded and unshaded regions corresponds to 7- 1 = 0. In figure 8 this 
boundary is given by 

tan (a, -a) I r =  .I 
tan az 

from which we can deduce that the critical values of a, and k are given by 

a; = +a & in, 
kz = tan2 (in - :a), 

k ,  = l/k:. 
In figure 9 this boundary is given by 

k = -  
tan a2 tan (a- az)  

(3.13) 

(3.14a) 
(3.14b) 
(3 .14~)  

(3.15) 

from which we can deduce that the critical values of az and k are given by 

a2 c - 1  - 2% (3.16 a) 
k, = l/tan*a;. (3.16 b) 

In Case 1, no singularities are present when a < in  and singularities are always present 
when a gn. In Case 2 singularities arc always present when a 2 n. As in the single- 
phase case, as a decreases the heat flux becomes less singular (or not singular at all) and 
as a increases the reverse is true. In Case 1, for a, < a1 as k increases 7 decreases and 
for a, > a, the opposite is true. This shows that when the smaller of the two wedges 
has the larger conductivity the singularity is stronger than when the smaller of the two 
wedges has the smaller conductivity. For Case 2 the singularity is stronger when the 
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FIGURE 8. Two-phase pure heat transfer: k us. a, for Case 1 for (a) trc < a < I[, (b) a = n, and 
(c) x < 01 < $. For OL < $T the heat flux is never singular while for a 3 i x  the heat flux is always 
singular. The shaded regions correspond to regions in parameter space where the heat flux is singular 
(i.e. T - 1 < 1)  while the unshaded regions correspond to non-singular behaviour (i.e. 7 -  1 > 0). The 
boundary between the two regions has T- 1 = 0 and is given by (3.13). 

conductivity in the wedge with the fixed-temperature boundary condition is smaller 
(i.e. k > 1). This holds regardless of the size of either of the two individual wedges. 

Observations analogous to those made for the single-phase thermal-field results 
found in 52.1 can be made here. First, 7 is always real-valued. Secondly, the same 
hierarchy in terms of heat-flux singularity, which was present in the single-phase 
thermal-field analysis, is present here. The no-flux/continuity/no-flux case (Case 1) 
shows the least singular behaviour, the fixed-temperature/continuity/no-flux case 
(Case 2) is the next most singular, and the fixed-temperature/continuity/fixed- 
temperature case (Case 3 )  is the most singular. Note that although the value of T in 
Case 3 is related to that in Case 1, as in the single-phase analysis, the heat flux in Case 
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FIGURE 9. Two-phase pure heat transfer: k us. a, for Case 2 for (a) a < ;K, (b) CL = +K, and (c) in < 
u < n. For u 2 K the heat flux is always singular. The shaded regions correspond to regions in 
parameter space where the heat flux is singular fie. T- 1 < 1) while the unshaded regions correspond 
to non-singular behaviour (i.e. 7 - 1 > 0). The boundary between the two regions has 7-  1 = 0 and 
is given by (3.15). 

3 exhibits a r-l behaviour due to the term linear in 8 in the expressions for the 
temperature fields. We also note that the ratio between the two individual wedge 
angles, rather than the actual values of these angles, is the important parameter in 
determining the ‘shape’ of these curves. However, the actual value of a determines the 
vertical scaling of 7 and the subsequent spacing between the higher roots. That is, as 
a increases, the value of T decreases and the roots tends to compress; and as a 
decreases, the value of T increases and the roots tend to spread out. Note that in figure 
6 the roots for l /k  can be found simply by reflecting the roots for k about a2 = {a. In 
figure 7 the roots are symmetric about a2 = &. We find that the presence of a second 
phase leads to a second mode of heat flow not obtained from the single-phase analysis. 

3.2. Non-isothermal flow 

In an analogous fashion to non-isothermal single-phase flow we consider non- 
isothermal two-phase flow in a solid/liquid wedge. Here there is fluid flow in a single 
wedge but heat transfer in both. Again, when the flow is bounded by rigid surfaces or 
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FIGURE 10. Two-phase non-isothermal flow: a comparison of the heat-flux and stress exponents for 
two-phase heat transfer for Case 1 and single-phase flow. The heat-flux results shown are for k = 
100.0 and total wedge angles a = in, in, x, and ix. Note that a, cannot exceed a. We see that the flux 
is more singular for small values of a2 while the stress may be more singular for larger values of a2. 
When thermocapillary effects are included, we expect solvability conditions at the points where the 
stress and heat-flux exponents intersect. 

by isothermal boundaries, or when y’ = 0 there is no coupling. In these cases the 
solutions to the non-isothermal flow problem are just the single-phase isothermal flow 
solution and the two-phase thermal field solution. We can compare the heat-flux and 
stress exponents in these cases to determine which field has the stronger singularity. 
This comparison allows one to determine which singularity places stronger resolution 
requirements on a numerical simulation, for example. 

Figure 10 shows heat-flux exponents for the thermal fields in Case 1 for conductivity 
ratio k = 100.0 and the real part of the stress exponents for the rigid/rigid wedge (Dean 
& Montagnon 1949), the rigid/free wedge (Moffatt 1964), and the free/free wedge 
(Moffatt 1964; Anderson & Davis 1993) for several values of the total wedge angle, a. 
Note that a2 cannot exceed a. The heat flux tends to be the stronger field for small 
values of the wedge angle az (the wedge containing the liquid). For larger values of a2 
either field can be stronger, depending on a and k .  Note that the right-hand portions 
of the curves, T - 1, are bounded by 7 = (n/a)  - 1. We recognize this boundary as the 
heat-flux exponent for the thermal field in a single wedge for the nf/nf case. 

Figure 11 shows a similar plot for the thermal fields in Case 2 with k = 0.01. Again, 
for small values of a2 the heat flux is the stronger field. For larger values of a2 either 
field can be stronger. The right-hand portions of the curves, 7-1, are bounded by 
7 = (7t/2a) - 1, which we recognize as the heat-flux exponent for the thermal field in a 

9 FLM 268 
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FIGURE 11. Two-phase non-isothermal flow: a comparison of the heat-flux and stress exponents for 
two-phase heat transfer for Case 2 and single-phase flow. The heat-flux results shown are fork = 0.01 
and total wedge angles a = in, in, x ,  and in. Note that a2 cannot exceed a. For larger values of k the 
heat-flux exponent is smaller, indicating an even more singular heat flux. When thermocapillary 
effects are included, we expect solvability conditions at the points where the stress and heat-flux 
exponents intersect. 

Hydrodynamic b.c. Thermal b.c. 
- ~~~ -~ 

e = o  B=a,  B=- -a  A = O  # = a ,  

rigid free nf continuity nf 
rigid free ft continuity nf 
free free nf continuity nf 
free free ft continuity nf 

TABLE 4. Types of boundary conditions for two-phase non-isothermal flow 

single wedge for the ft/nf case. Also note that the results shown here are for small k ;  
the heat flux becomes more singular as k increases (see figure 7). Therefore, for a 
rigid/rigid liquid wedge the heat flux always has the stronger singularity, for a 
rigid/free liquid wedge the heat flux is always stronger for 01 < 7c, and for a free/free 
liquid wedge the heat flux is always stronger for 01 < in. 

The boundary conditions for the cases that allow thermocapillary coupling are listed 
in table 4. As in the single-phase non-isothermal flow problems we find that the thermal 
fields decouple from the flow and can be determined in advance of the flow field. 
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Therefore the thermal-field results are just the two-phase thermal-field results of $3.1 
(see equations (3.2)-(3.7)). For the flow, since we are considering just a single liquid 
phase the general formulae found for the streamfunction in $2.2.1 still apply. The 
values of 7 and f,(B) in these formulae correspond to thermal field, T,  of $ 3.1. 

Rigidlfree wedge, n~7flux/continuity/no-JIEIx: Here we have thermocapillarity on the 
free surface 0 = a2. The thermal fields are given by (3.2) and (3.3). The streamfunctions 
are given by the expressions in $ 2.2.1 for cases (1 i)-(2ii). As in the single-phase analysis 
we have solvability problems that arise when the forcing term is resonant. These 
resonant cases can be most easily recognized as the points where the solutions of (3.3) 
intersect the solutions of 

7 sin 201, -sin 27aP = 0. (3.17) 

Examples of such intersections can be seen in figure 10. In such a case, the forcing is 
resonant, and solutions to the coupled system exist only when a, = x and 7 = 2,3,4, 
. . . . That is, solutions exist only when the intersections occur at these values. For partial 
local solutions the exponents 7 and cr are those shown in figure 10. 

Local solutions exist for a2 = x. The value of T is determined by (3.3) with a2 = n. 
Thus, any solution, 7 = ~ ( a ,  k )  such that c1 > x and az = x is a valid local solution. 

Michael (1958) found that a stress-free planar free surface and a planar rigid 
boundary must meet at an angle of x. In comparison with this result we note that the 
flow in our case corresponds to zero normal stress but non-zero shear stress due to 
thennocapillarity on the free surface, However, we still find that a non-isothermal 
planar free surface upon which y' + 0 must be oriented at an angle of x in order to 
satisfy all local boundary conditions. 
Rigidlfree, jixed-temperaturelcontinuitylno-flux : Here the results are analogous to 

the previous case. The thermal fields are given by (3.4) and (3.5). Again, solvability 
problems are present in the resonant cases where 7 and a2 satisfy simultaneously (3.5) 
and (3.17). There are examples of these intersections in figure 11. No solutions to the 
coupled problem exist unless a2 = x and 7 = 2,3,4,. . . . The flow for partial local 
solutions is given by the general non-isothermal flow results of $2.2.1 where 7 andh(6') 
are determined by (3.4) and (3.5). 

The flow for local solutions is given by the general non-isothermal flow results of 
$2.2.1 where f,(6') is given by (3.4) with a2 = x and T determined by (3.5). 

Freelfvee, izo-~uxlcontinuitylno-flux : Thermocapillary effects are present on both 
0 = 0 and 0 = a2. The phase between 6' = 0 and 0 = -a1 can be thought of as a heat- 
conducting medium with no flow, 

Partial local solutions are given by the expressions in 52.2.1 with 7 andh(6') given by 
(3.2) and (3.3). Values of 7 and appearing in these streamfunctions are shown in 
figure 10. 

The conditions required for local solutions given by (2.29) with a replaced by az and 
(3.3), which determines 7, can only be satisfied when a2 = x. Therefore, the local 
solutions for general values of 7 such that sin (7 f 1) a2 + 0 have streamfunctions given 
by (2.28) where 7 andL(8) are given by (3.2) and (3.3) with a2 = TI. When a2 = x and 
7 = 1,2,3, . . . solvability requires that yh = 7: and the streamfunction is given by (2.33) 
with a1 = jn/7, j = 1,2,3, . . . , 7, and h(0) = Ath( - I)j.  

Freelfree, jixed-temperature/continuity/no-flux : This case is analogous to the 
previous case. The only difference is that the boundary B = -a,  is at a fixed 
temperature. Thermocapillary effects are still present on both 8 = 0 and 6' = a2. 

Partial local solutions are given by the expressions in $2.2.1 with 7 andf,(B) given by 
(3.4) and (3.5). Values of 7 and cr appearing in these streamfunctions are shown in 
figure 11. 

9-2 
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The conditions required for local solutions given by (2.29) and (3.5), which 
determine 7, can again only be satisfied when a2 = x. Therefore, the local solutions for 
general values of 7 such that sin(7f 1)a2 += 0 have streamfunctions given by (2.28) 
where 7 andf,(O) are given by (3.4) and (3.5) with a2 = n. When a2 = x and 7 = 1,2, 
3, .  . . solvability requires that 7; = yj and the streamfunction is given by (2.33) with 
a1 = ( j+ i )  n/7, j = 0,1,2,. . . ,7 ,  and Ji(0) = Ath( - 1>'. 

4. Small-capillary-number expansion 
In this section we shall extend the small-capillary-number analysis of Anderson & 

Davis (1993) to non-isothermal flow. While there are several possible cases which can 
be analysed here, for demonstration purposes we shall consider the case of a 
solid/liquid double wedge with thermal boundary conditions corresponding to Case 2 
in $3.1 (the second of table 4). However, the free surface is not assumed to be planar; 
we take a2 = a2(r). 

We expand 
SI. = & + q b l +  ..., (4.1 a)  

a2 = ap  + cap, + czar' + . . . , (4.1 b) 

for i = 1,2. The streamfunction satisfies the biharmonic equation and is subject to the 
boundary conditions (2.19 a-c) and the normal-stress boundary condition 

& = 2-p + C T y  + . . . (4.1 c) 

C[o-A].A = -V.A on B = az(r). ( 4 4  
The thermal fields satisfy the conditions given in $3.1 for Case 2. Note that since a2 is 
no longer independent of r ,  the boundary conditions become more complicated. 

At leading order, the normal-stress boundary condition is satisfied by taking a?) 
constant. Therefore, the leading-order streamfunction, $, is just a partial local 
solution such as given in $2.2. Note that both isothermal and non-isothermal 
contributions are of interest here. The leading-order thermal field is given by (3.4) 
where T is determined by (3.5). 

Of particular interest is the free-surface position. From the normal-stress boundary 
condition we can obtain the O(C2)  term for @') with flow and thermal-field corrections 
up to O(C). If we include higher orders, we find that 

a2 = a?)+ C{4rr"+ Got-'}+ C2{& r"+GG, f2'}+. , . . (4.3) 
This contains the isothermal (4 and 4) and the non-isothermal (Go and G,)  
contributions. The streamfunction and temperature corrections terms are of the form 

=f l (0 )  r2r+1 +gl(B) rZ7+', and Ti1) = B,(H) rzT for i = 1,2. The coefficients in (4.3) are 
given by 

32cD?[a2(c? - 1) sin4 a?) + (sin 2vaP) - 1) (a2 sin2 - sin2 r a 9 ]  
> (4.4b) F = -  

(a + 1)' sin2 aa$"(2g sin Zap) - sin 4craP)) 1 
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where cr satisfies (T sin 2ap) -sin 2aa!f" = 0, the derivatives of go and g, are evaluated at 
0 = a?), and we assume that r sin2af)-sin2ra$" += 0. We note here that the zeros of 
4 and Go correspond to those angles, namely a',") = x: that have zero normal stress on 
0 = ap) and therefore correspond to the angles where local solutions exist. 

Following Anderson & Davis (1993) we expand the value of a2 in (4.3) for angles 
near x and find that 

a2 = a?)+ ~ { ~ ~ ~ ( ~ ~ . ' , " ) - x ) r ~ + g ~ ~ r ~ + - t ~ , ( a ! i O ) - x ) ' r ' + .  ..I 

2ry'Ath 
,u sin 2rn: ' 

where J , = -  . (4.6a) 

7 + 1) 2(27 + 1)2 cos 2771. 
J = - {(rA;hhy')2(2(3 - 

27(27+ 1) sin 2rx cosz 771. sin 27% 

In their isothermal analysis, Anderson & Davis (1993) were able to identify non- 
uniformities in the small-capillary-number expansions by considering the limits r --f 0 
and ap)-+n:. Depending on the order in which these limits are taken, different results 
are obtained. We now wish to determine how these results are altered by the presence 
of non-isothermal contributions. 

First, take r +  0 (before a',") +x). Here we obtain 

a2 = a?) + c { $ D ~ ( ~ ( , O )  - x) ri + (a?) - x ) z4  r' + , . .) 

If T > $, the result is the same as the isothermal result, namely 

a2 = a',") + C { $ D ; ( ~ P )  - n:) ri + . . .> + c2 + . . .} + . . . . (4.8) 

This requires that (a?) - n) 9 d r i .  This representation shows that the local solution 
has a free surface with infinite curvature at r = 0. If r < t, we get 

a2 = a?) + C{(CL.?) -~)~& rT + . . .] + C'((a',") --IT)'.( r2'+. . .> + . . . . (44.9) 

This also gives an interface that has infinite curvature at r = 0. For this to be 
asymptotically valid, we need 1 $ Cr'. This is clearly satisfied as r + O  and the 
requirement for asymptoticity does not depend on the value of the angle. 

Next, let a',") +. x (before r + 0). Here, the isothermal terms are the dominant terms. 
We find that 

+ . . . +  .... (4.10) a' = n: + (a?) -x) + C{@, r 2 + .  . .)+ C2 -YEG 

This corresponds to a planar free surface. This expansion is valid when r % 
C/(ap)-n).  So r+O is not allowed unless C = 0. Consequently, in this limit the 
expansion cannot be considered local and the non-isothermal terms do not change the 
expansion from the isothermal case. 

In the isothermal case, Anderson & Davis (1993) concluded that a small-capillary- 
number analysis has non-uniformities as r +. 0 and a',") + x. In the non-isothermal case, 

I r 

i z  
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there again exist the same type of non-uniformities, the form of which is slightly 
different when 7 < f .  This analysis, as in the isothermal case, also demonstrates the 
significance of partial local solutions. 

5. Interpretations 
Our intention here is to provide interpretations for the non-isothermal flow cases in 

which separable solutions with bounded temperatures and velocities of the forms (2.5) 
and (2.11) do not exist. In the single-phase non-isothermal flow analysis this ‘non- 
existence’ arose in the following cases: (r/f, nf/nf for a = +:, in:), (r/f, ft/nf for 
a = n), and (f/f, ft/nf for a = in, in). For two-phase non-isothermal flow in a 
solid/liquid wedge this non-existence arose for more general wedge angles, depending 
on the conductivity ratio, k. We shall discuss in detail the first two single-phase cases 
and identify means by which solutions can be found. 

First consider the single-phase case of a rigid/free wedge with no-flux/no-flux 
boundary conditions with wedge angle in:. Here we found that temperature 
distributions that were bounded as r + 0 had the form T - ff8) where 7 = 2,4,6, . . . . 
These allowed no solution to the coupled flow problem. However, if we consider 
solutions with unbounded temperatures at the origin, specifically a logarithmic 
temperature distribution, coupled solutions to the flow problem can be found. In this 
case the temperature and flow fields are given by 

T =  Dth+bolnr,  (5.1 a)  

- 
@ = -  . B cos 8 - - 8 sin B + $r, 

n: 2 l  (5.1 b) 

where represents the isothermal contribution and is given in Anderson & Davis 
(1993) by their equation (2.28). Note that the linear term in r is the dominant one near 
the corner. Logarithmic temperature distributions represent either heat sources or 
sinks at the wedge vertex. In the following analysis we show how these logarithmic 
temperature distributions are related to two-phase temperature distributions with 
bounded temperatures at r = 0. 

Consider the two-phase problem with the double-wedge geometry where phase one 
is solid and phase two is liquid. For this example we take az = in: and keep 0 1 ~  arbitrary 
but bounded away from zero. The key difference between this problem and the single- 
phase problem is the addition of an adjacent solid phase which conducts heat. For the 
thermal boundary conditions we consider those given as Case 2 of 53.1. In the limit 
k + cn these boundary conditions approach the no-flux/no-flux boundary conditions 
in the liquid wedge. 

The hydrodynamic boundary conditions are given by (2.19a-c) where 01 = in: (note 
that we are considering just partial local solutions). Solutions to this non-isothermal 
flow problem can be found. The thermal fields and corresponding values of 7 are given 
by (3.4) and (3.5) and the streamfunction is given by 

(sin7Hcos8--7~0~~8sin8) (5.2) sin 78 sin B + ~ 

cos 7a2 1 
where &I is given by (2.28) in Anderson & Davis (1 993). 

or in this case, 
In the limit k + co we see that the smallest value of 7 is given approximately by (3.1 l), 

7 - (2/na1 k)t. (5.3) 
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FIGURE 12. Two-phase non-isothermal flow, partial local solutions: a sketch of the streamlines (solid 
curves) and isotherms (dashed curves) corresponding to thermal boundary conditions in Case 2 with 
k $ 1. Here there is fluid flow in phase 2 (i.e. phase 1 is solid) and heat transfer in both phases. The 
leading-order thermal fields are linear in 0 (phase 1) and logarithmic in r (phase 2). The flow field is 
driven locally by thermocapillarity; the flow along the free surface is from hot to cold as indicated. 

Note that this is the correct asymptotic form as k+  co for values of al bounded away 
from zero. Note also that sin7a, and cos7a2 are non-vanishing for large but finite k. 
If we now fix r and let 7 + 0 (i.e. k -+ co) in the expressions for the thermal fields and 
streamfunction we find that 

q = T., + Ath[l + B/al], (5.4a) 
T,  = Z1+Ath[l + ~ l n r ]  (5.4b) 

and (5 .44  
Taking Dth = and b, = 7Ath gives the previous single-phase result for T,  in 
(5.1). Figure 12 shows the streamlines (solid curves) and isotherms (dashed curves) for 
the two-phase problem in this limit. 

Note that this result was derived for general values of a1 and holds as long as al is 
bounded away from zero. We obtain similar results for the single-phase case with the 
same boundary conditions where the wedge angle is %rc. 

This shows that for the two-phase problem with k+co ,  most of the heat is 
conducted through the corner; in the single-phase limit this is represented by a heat 
source or a heat sink at the corner. Keller (1987) encountered a similar situation when 
considering the conductance of a material in a corner region defined by an array of 
blocks where adjacent blocks had high/low conductivities. 

There are several comments to be made about these results. We found that the limit 
k+  co is non-uniform as r +. 0 for the temperature field but uniform for the flow. This 
shows that the logarithmic temperature distribution, which is ‘necessary’ in the single- 
phase analysis, is actually the result of a limiting case of a ‘regular’ temperature 
distribution in the two-phase problem. The assumption that the two-phase problem 
can be described by a single phase with bounded temperatures breaks down because 
the limit k+  co and r + 0 is non-uniform. This example shows that single-phase models 
with separable solution forms may be too idealized in certain cases. 

Next consider partial local solutions for the case of flow in a single phase bounded 
by a rigid surface and a free surface with wedge angle 7c ; the rigid boundary has a fixed- 
temperature condition and the free surface is a no-flux boundary. We shall relate this 
to a soluble problem in a two-phase medium with heat transfer and fluid flow in both 
phases. 

& = &I - (y;/2p) 7Athr[sin B - B cos B - (2/7c) 6 sin 01. 



260 D. M .  Anderson and S .  H.  Davis 

Cold 

FIGURE 13. Two-phase non-isothermal flow, partial local solutions: a sketch of the streamlines (solid 
curves) and isotherms (dashed curves) with two fluid phases and just one thermal phase (i.e. k,  = 0). 
The flow in phase 2 is driven directly by thermocapillarity. The flow in phase 1 has zero shear stress 
on 19 = 0 but is driven by viscous drag due to the motion in phase 2. Thermocapillarity drives the flow 
outward from hot to cold along the free surface separating the two fluid phases. The existence of a 
solution for k = 0 when fluids on both sides of the free surface are included indicates that the 
interactions from the second phase, even one with relatively small viscosity, are important. 

Consider the general two-phase problem which has heat transfer and fluid flow in 
both wedges for the case where a, = x and a2 = ix. The boundaries H = -a1 and 
19 = ct2 will be taken to be rigid and isothermal (each at the same fixed temperature); 
however, for the purposes of the discussion here, the choice of boundary condition on 
0 = az is not critical. We can address the single-phase problem by looking at the heat 
transfer and fluid flow in phase 1 in the limit k = k , /k ,  + O  and ,u = ,uz/ ,ul+O 
where ,ul and ,uz are the viscosities in fluids 1 and 2, respectively. 

The hydrodynamic boundary conditions are discussed in the Appendix. A key 
difference between the two-fluid and the single-fluid cases is that here the jump in the 
shear stresses balances the surface-tension gradients. The non-isothermal flow problem 
can be solved for general values of k and ,u in this case and we find that, in general, 
thermocapillary effects drive a flow in both phases (see the Appendix). As both k+  0 
and ,u+O,  the denominator in the streamfunction approaches zero and in the case 
k = ,u = 0 the form of the solution becomes invalid, revealing the same ‘non-existence’ 
problems as found in the single-phase analysis. However, as long as either k or ,u is non- 
zero the streamfunction representation is valid. 

Suppose that we take k = 0 and allow heat transfer in phase 1 only. Here we find that 
azll.,/a62 = 0 on 0 = 0 so the shear stress boundary condition (A 1) is effectively 
reduced to 

This shows tht thermocapillarity necessarily drives a flow in phase 2. Since for partial 
local solutions the viscosity enters only through the shear-stress boundary condition, 
this indicates that the flow which is still present in both phases, is independent of the 
viscosity in phase 1. When k = 0, the effect of taking p2 = 0 is that thermocapillarity 
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cannot drive a flow in either phase. In the limit of pUn + 0 the streamfunction becomes 
unbounded unless ybf,(O) + 0 which suggests that the thermocapillarity must be weak. 
However, as noted by Proudman & Asadullah (1988), a Stokes flow description 
requires that the viscosity is not vanishingly small. Therefore we must let p+O by 
taking p 1  --f cc while keeping puz finite; then we find a valid solution which has flow in 
both phases. Figure 13 shows a sketch of the streamlines and isotherms in this case. The 
flow in phase 2 is driven directly by thermocapillarity; here the flow is driven towards 
the colder reDon, away from the corner. The flow in phase 1 is not directly driven by 
thermocapillarity (it has zero shear stress on 8 = 0) but motion in that phase is induced 
from the flow in phase 2 through viscous drag acting through the no-slip condition. 
Therefore we still see flow in two phases. The isotherms shown correspond to a single- 
phase heat transfer problem. This analysis suggests that the reason why the single- 
phase model is not sufficient in this case is that thermocapillarity necessarily drives a 
flow in the second phase. 

Now suppose that we take p2 = 0. This gives fluid flow in phase 1 only. In order to 
obtain a solution in this case, we must have non-zero conductivity, and hence heat 
transfer, in the second phase. Mathematically, the existence of non-zero conductivity 
in the second phase changes the value of the exponent, 7. Depending on the thermal 
boundary condition applied on the boundary 0 = a, = in, the smallest value of 7 
(which is f when k = 0) either increases or decreases (for a no-flux condition 7 decreases 
and for a fixed-temperature condition 7 increases). Physically, the existence of non-zero 
conductivity in the second phase changes the temperature gradient, and hence the 
thermocapillary forcing on the free boundary. 

These examples show that solvability problems in single-phase cases can be relieved 
by allowing fluid flow and/or heat transfer in an adjacent phase. We expect that similar 
ideas can be applied to the solvability cases which arose in the analysis of $3.2 where 
non-isothermal flow in a solid/liquid wedge was considered. 

6. Summary 
We have presented a local picture of fluid flow and heat transfer near contact lines. 

We have studied single- and multiple-phase systems with single and multiple fields. The 
class of solutions sought are those with bounded temperalures and velocities at the 
wedge vertex. Locally, the governing equations simplify to Laplace's equation and the 
biharmonic equation for the temperature and streamfunction, respectively. Separable 
solutions to the temperature and streamfunction are written as T - r'f,(O) and @ - 
~'+~&(/3), respectively. For the streamfunction, we distinguish between local solutions, 
those that satisfy all local boundary conditions, and partial local solutions, those that 
satisfy all local boundary conditions except for the normal-stress boundary condition. 
The analysis provides locally valid solutions that identify the types of singularities that 
are present at the corner and show how these singularities vary with the wedge angle. 

For single-phase heat transfer the temperature exponent, T ,  is inversely proportional 
to the wedge angle (see figure 1). The dominant contribution to the heat flux near the 
corner varies like r7-l except for the case with two isothermal boundaries (at two 
different temperatures) where thc heat flux has an r-l behaviour. In all cases the 
exponent, T, is purely real, giving monotonic temperature distributions in radial 
distance from the corner. 

For non-isothermal flow in a single phase there is no convective coupling in the local 
wedge region though the temperature and flow fields can be coupled through 
thermocapillarity along a non-isothermal free surface. 
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For rigid surfaces, isothermal free surfaces, or for cases where y‘ = Idy/d?l = 0, 
there is no local coupling between the thermal and flow fields. In these cases the flow 
is given by the isothermal-flow results while the thermal fields are given by the pure 
heat-transfer results. The heat flux and stress exponents, 7-  1 and Re(v- l), are those 
shown in figures 2 4 .  From these plots, the field with the stronger singularity can be 
identified. 

When non-isothermal free surfaces are present, the flow field may be coupled to the 
temperature field through thermocapillarity. We find that the thermal field decouples 
from the flow leaving T - rT as in the pure-thermal problems. The resulting 
mathematical system for the flow is inhomogeneous with driving terms proportional to 
the thermal gradients along the free surface. The resulting streamfunction then has 
particular terms proportional to F1, which balance forces on the free surface, as well 
as homogeneous terms proportional to rmfl, which correspond to zero shear stress. 
Although it is the particular terms that balance the surface-tension gradients, either 
may be the locally dominant component of the flow depending on which exponent, 
Re(g) or 7, is smaller (see figures 2 4 ) .  

For two-phase heat transfer we found that the temperature exponent, 7, depends on 
the geometry, the thermal conductivity ratio, k,  as well as the conditions applied on the 
wedge boundaries. The exponent, 7, is always real-valued. Also, for fixed interior 
wedge ratios (i.e. fixed a1/a2) and fixed values of k, T is inversely proportional to the 
total wedge angle. However, 7 remains finite as either a, or a2+0. Its specific 
dependence on the relative size of the interior angles varies with the type of thermal 
boundary conditions applied on the two outer-wedge boundaries (see figures 6-9). In 
an analogous fashion to Proudman & Asadullah (1988), we have identified two modes 
of heat flow when the conductivity ratio is large or small. The temperature mode 
corresponds to the mode predicted from the single-phase analysis and has O(1) 
temperature on the boundary between the two phases. The heat flux mode is the mode 
not obtained from the single-phase analysis. Here the phase with the larger conductivity 
has relatively constant temperature and the phase with the smaller conductivity ‘sees’ 
the boundary between the two phases as a fixed-temperature boundary. We also 
observe root-splitting features for asymptotically large and small conductivity ratios 
similar to those discussed by Anderson & Davis (1993) for two-fluid flow in a wedge. 
We obtain values for the total wedge angle which give bounds on the regions in which 
the heat flux is singular. For no-flux conditions on the two outer boundaries, the heat 
flux is never singular for a < fn  while it is always so for a 2 $7~. Between these values 
the wedge geometry and conductivity ratio determine whether or not the heat flux is 
singular. For the case with one outer boundary held at a fixed temperature and the 
other with a no-flux condition the heat flux is always singular for a 2 K .  For a < 7~ the 
wedge geometry and conductivity ratio determine whether or not the heat flux is 
singular. 

Non-isothermal flow in two phases is analogous to non-isothermal flow in a single 
phase. We considered fluid flow in a single wedge and heat transfer in two wedges with 
various boundary conditions. The form of the thermocapillary forcing is the same as 
in the single-phase problems; however, the specific values of the thermal gradients are 
different, 

When only rigid surfaces or isothermal free surfaces are present, or when y’ = 

Idy/dTI = 0, there is no local coupling of the temperature and flow fields. In these cases 
the flow is given by the single-phase isothermal flow results (see Anderson & Davis 
1993) while the temperature is given by the two-phase pure-heat-transfer results. The 
strengths of the singularities in these fields can be compared (see figures 10 and 11). 

D. M .  Anderson and S. H .  Davis 
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When non-isothermal free surfaces are present with y' =+ 0, the flow is driven in part 
by the local surface-tension gradients. The thermal fields again decouple from the flow 
and are given by the two-phase pure-heat-transfer results. For the flow problem we 
again find particular solutions with rT+l and homogeneous solutions with r"+'. 
Solvability problems arise when 7 corresponds to an eigenvalue of the homogeneous 
flow problem. Although the thermal fields were found to be monotonic in r in all cases 
(i.e. 7 is real-valued) this is consistent with the existence of Moffatt vortices because 
locally there is no convection. In this analysis we find that local solutions exist only for 
liquid wedge angles of x. This can be compared with Michael's local result for 
isothermal flow in a rigid/free wedge which requires a wedge angle of x in order to 
satisfy all local boundary conditions (Michael 1958). For the isothermal wedge there 
is zero normal and shear stress on the free surface. For the non-isothermal problem 
there is zero normal stress but non-zero shear stress due to surface-tension gradients. 

We also analysed non-isothermal flow using a perturbation expansion for small 
capillary number. This is analogous to that of Anderson & Davis (1993) for isothermal 
flow, where they identified non-uniformities near the corner for liquid wedge angles 
near x and found that the interface has infinite curvature at r = 0. For non-isothermal 
flow in this limit, the valid local solution also corresponds to a free surface with infinite 
curvature at r = 0;  this singularity is stronger when the heat-flux exponent is smaller 
than the stress exponent. 

In the non-isothermal flow problems, when 7 corresponds to an eigenvalue of the 
isothermal, or homogeneous, system the thermocapillary forcing is resonant, and 
solutions to the non-isothermal flow problem can be found only if certain solvability 
conditions are satisfied. For single-phase non-isothermal flow we encountered cases in 
which no solutions in the class of functions sought could be found. These were (i) (r/f, 
nf/nf for a: = ix, in), (ii) (r/f, ft/nf for a = x), and (iii) (f/f, ft/nf for a = in, :n). We 
found that case (i) could be resolved by considering a two-phase system with one solid 
and one liquid wedge. Here the limit of large conductivity in the liquid phase (i.e. k +  
a) regains the single-phase wedge problem. In this case a 'regular' solution to the two- 
phase system gives a logarithmic temperature distribution in the liquid wedge for 
asymptotically large conductivity ratio, k (i.e. the conductivity in the liquid phase much 
larger than that in the solid phase). This indicates that for large k most of the heat in 
the two-phase problem is conducted through the corner. This situation is represented 
by a heat source or sink in the single-wedge problem. For case (ii) we showed that 
solutions can be found when either a second fluid phase, a second heat conducting 
phase, or both are present. When there is heat conduction in the original phase only, 
thermocapillarity necessarily drives a flow in the second phase. When there is fluid flow 
in the original phase only, solutions can be obtained only when there is non-zero 
conductivity in the second phase. These observations show that under certain 
conditions single-phase models with simple separable solution forms are too special to 
depict the physics realistically. 
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Appendix. Streamfunctions for non-isothermal two-fluid flow 
The following shows the streamfunction for the non-isothermal fluid flow and heat 

transfer in which two liquid phases are present. We consider only partial local solutions 
for the double wedge with a, = n, a2 = in. The fluid viscosities are p l  and ,uz for phases 
1 and 2, respectively, and we define a viscosity ratio p = ,u2/,ul. 

and 42, are those given in 
Anderson & Davis (1993, equations (3.1)) with their shear stress boundary condition 
(3.1 e)  replaced by 

The boundary conditions on the streamfunctions, 

The streamfunction form we seek is 

$i = rTf1[A;') cos (7 + 1) 8 + @t) sin (7 + 1 )  8 + c!) cos (7- 1) 8 +@) sin (7 - 1) 81 ( A  2) 

for i = 1'2. The coefficients are given by 

-C(l) = i(yi/pl)A(0) cos TTC(T~ - sin2 .(in)) 
' 7 cos 747' - sin' $n) - hp sin2 ~n 

gu = 
= -~(y;/p,)f,(O) sin 77~(7~ - sin2 T($T)) ' 7 cos 7 - 7 4 ~ ~  - sin2 f7n) -i,u sin2 7n 

(i.e. Case 3 in $3.1 with both 8 = -n  and 13 = in at the same fixed temperature). Note 
that in the limit k+  0 we find 7 - i,:, i, . . . or 7 - 2,4,6,. . . . We can identify the 
fractional exponents corresponding to the temperature mode (where there is non- 
constant temperature on the interface 8 = 0) and the even exponents corresponding to 
the heat flux mode (where the interface 8 = 0 is essentially isothermal). 
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